Modelo de asignación dinámica de tareas multiagente en la polícia nacional del Perú en la ciudad de Arequipa
Resumen
La Policía Nacional del Perú desempeña un papel crucial en la protección y seguridad de los ciudadanos. No obstante, los métodos tradicionales de asignación de tareas han demostrado ser insuficientes ante la creciente complejidad de los desafíos delictivos. Este estudio se centra en mejorar la asignación de tareas en la policía de Arequipa mediante un enfoque innovador: un modelo de asignación dinámica de tareas utilizando un sistema multiagente respaldado por inteligencia artificial.
La investigación se llevó a cabo en la ciudad de Arequipa, impulsada por la necesidad de optimizar la respuesta policial a las denuncias ciudadanas y reconociendo la importancia de la tecnología en la modernización de los métodos policiales. Se realizó una revisión sistemática de la literatura para fundamentar conceptualmente el modelo propuesto, seguida de un diseño e implementación práctica utilizando técnicas de ingeniería de software y aprendizaje automático.
El modelo desarrollado, denominado LEPH (Law Enforcement Problem Heterogeneous), se basa en la idea de asignar dinámicamente múltiples agentes a tareas variadas y desconocidas en tiempo real. Esto permite una distribución óptima de recursos humanos y una respuesta más rápida y efectiva a los incidentes delictivos, considerando factores como la ubicación, la urgencia y la importancia de cada tarea.
Los resultados obtenidos muestran una mejora significativa en la eficiencia y efectividad de la policía de Arequipa. Se evidenció una reducción en el tiempo de respuesta a las denuncias del 30%, aunque fue necesario aumentar el presupuesto de la policía en un 3%. Además, los análisis revelaron una reducción notable en la distancia real recorrida por los patrulleros, destacando la eficiencia del modelo en acercar a los agentes a las denuncias. También se identificó que mantener un número óptimo de agentes es crucial para evitar incrementos significativos en la distancia de ejecución.