Mostrar el registro sencillo del ítem
Characterization of climatological time series using autoencoders
dc.contributor.author | Alfonte Zapana, Reynaldo | |
dc.contributor.author | López Del Alamo, Cristian | |
dc.contributor.author | Llerena Quenaya, Jan Franco | |
dc.contributor.author | Cuadros Valdivia, Ana María | |
dc.date.accessioned | 2018-11-21T17:09:28Z | |
dc.date.available | 2018-11-21T17:09:28Z | |
dc.date.issued | 2017-11-08 | |
dc.identifier.citation | @INPROCEEDINGS{8285717, author={R. A. Zapana and C. Lopez del Alamo and J. F. L. Quenaya and A. M. C. Valdivia}, booktitle={2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)}, title={Characterization of climatological time series using autoencoders}, year={2017}, volume={}, number={}, pages={1-6}, keywords={climatology;control charts;feature extraction;geophysics computing;meteorology;neural nets;pattern clustering;time series;common problems;climatological time series data;high dimensionality;climate pattern;data processing;feature extraction technique;feature extraction method;autoencoder neural network;Synthetic Control Chart Time Series;autoencoders;AUTOE;Time series analysis;Feature extraction;Discrete wavelet transforms;Discrete cosine transforms;Dimensionality reduction;Meteorology;Dimensionality reduction;autoencoder;time series}, doi={10.1109/LA-CCI.2017.8285717}, ISSN={}, month={Nov},} | es_ES |
dc.identifier.isbn | 978-1-5386-3734-0 | |
dc.identifier.uri | http://repositorio.ulasalle.edu.pe/handle/20.500.12953/29 | |
dc.description.abstract | Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series. | es_ES |
dc.description.uri | Trabajo de investigación | es_ES |
dc.language.iso | eng | eng_US |
dc.publisher | Universidad La Salle | es_ES |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.source | Universidad La Salle | es_ES |
dc.source | Repositorio institucional - ULASALLE | es_ES |
dc.subject | Research Subject Categories::TECHNOLOGY | es_ES |
dc.title | Characterization of climatological time series using autoencoders | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.identifier.journal | 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) | es_ES |
dc.description.peer-review | Doble ciego | es_ES |
dc.identifier.doi | 10.1109/LA-CCI.2017.8285717 | es_ES |
dc.subject.ocde | Research Subject Categories::TECHNOLOGY | es_ES |