Mostrar el registro sencillo del ítem

dc.contributor.authorAlfonte Zapana, Reynaldo
dc.contributor.authorLópez Del Alamo, Cristian
dc.contributor.authorLlerena Quenaya, Jan Franco
dc.contributor.authorCuadros Valdivia, Ana María
dc.date.accessioned2018-11-21T17:09:28Z
dc.date.available2018-11-21T17:09:28Z
dc.date.issued2017-11-08
dc.identifier.citation@INPROCEEDINGS{8285717, author={R. A. Zapana and C. Lopez del Alamo and J. F. L. Quenaya and A. M. C. Valdivia}, booktitle={2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)}, title={Characterization of climatological time series using autoencoders}, year={2017}, volume={}, number={}, pages={1-6}, keywords={climatology;control charts;feature extraction;geophysics computing;meteorology;neural nets;pattern clustering;time series;common problems;climatological time series data;high dimensionality;climate pattern;data processing;feature extraction technique;feature extraction method;autoencoder neural network;Synthetic Control Chart Time Series;autoencoders;AUTOE;Time series analysis;Feature extraction;Discrete wavelet transforms;Discrete cosine transforms;Dimensionality reduction;Meteorology;Dimensionality reduction;autoencoder;time series}, doi={10.1109/LA-CCI.2017.8285717}, ISSN={}, month={Nov},}es_ES
dc.identifier.isbn978-1-5386-3734-0
dc.identifier.urihttp://repositorio.ulasalle.edu.pe/handle/20.500.12953/29
dc.description.abstractCommon problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series.es_ES
dc.description.uriTrabajo de investigaciónes_ES
dc.language.isoengeng_US
dc.publisherUniversidad La Sallees_ES
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.sourceUniversidad La Sallees_ES
dc.sourceRepositorio institucional - ULASALLEes_ES
dc.subjectResearch Subject Categories::TECHNOLOGYes_ES
dc.titleCharacterization of climatological time series using autoencoderses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.journal2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)es_ES
dc.description.peer-reviewDoble ciegoes_ES
dc.identifier.doi10.1109/LA-CCI.2017.8285717es_ES
dc.subject.ocdeResearch Subject Categories::TECHNOLOGYes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem