Mostrar el registro sencillo del ítem

dc.contributor.authorOcsa, Alexander
dc.contributor.authorHuillca, Jose Luis
dc.contributor.authorLópez Del Alamo, Cristian
dc.date.accessioned2018-11-21T17:14:44Z
dc.date.available2018-11-21T17:14:44Z
dc.date.issued2018-07-04
dc.identifier.citationOcsa A., Huillca J.L., Lopez del Alamo C. (2018) On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets. In: Mendoza M., Velastín S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2017. Lecture Notes in Computer Science, vol 10657. Springer, Chames_ES
dc.identifier.isbn978-3-319-75193-1
dc.identifier.urihttp://repositorio.ulasalle.edu.pe/handle/20.500.12953/30
dc.description.abstractApproximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters. Aiming to overcome these issues, we propose a new method for scalable similarity search, i.e., Deep frActal based Hashing (DAsH), by computing the best data-parameters values for optimal sub-space projection exploring the correlations among CNN features attributes using fractal theory. Moreover, inspired by recent advances in CNNs, we use not only activations of lower layers which are more general-purpose but also previous knowledge of the semantic data on the latest CNN layer to improve the search accuracy. Thus, our method produces a better representation of the data space with a less computational cost for a better accuracy. This significant gain in speed and accuracy allows us to evaluate the framework on a large, realistic, and challenging set of datasets.es_ES
dc.description.uriTrabajo de investigaciónes_ES
dc.language.isoengeng_US
dc.publisherUniversidad La Sallees_ES
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.sourceUniversidad La Sallees_ES
dc.sourceRepositorio institucional - ULASALLEes_ES
dc.subjectResearch Subject Categories::TECHNOLOGYes_ES
dc.titleOn Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.journalIberoamerican Congress on Pattern Recognitiones_ES
dc.description.peer-reviewDoble ciegoes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-319-75193-1es_ES
dc.subject.ocdeResearch Subject Categories::TECHNOLOGYes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem