Mostrar el registro sencillo del ítem

dc.contributor.authorLlerena Quenaya, Jan Franco
dc.contributor.authorLópez Del Alamo, Cristian
dc.date.accessioned2018-11-21T17:24:32Z
dc.date.available2018-11-21T17:24:32Z
dc.date.issued2018-02-08
dc.identifier.citationJ. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668es_ES
dc.identifier.isbn978-1-5386-3734-0
dc.identifier.urihttp://repositorio.ulasalle.edu.pe/handle/20.500.12953/32
dc.description.abstractOver the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.es_ES
dc.language.isoengeng_US
dc.publisherUniversidad La Sallees_ES
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.sourceUniversidad La Sallees_ES
dc.sourceRepositorio institucional - ULASALLEes_ES
dc.subjectResearch Subject Categories::TECHNOLOGYes_ES
dc.titleNon-rigid 3D shape classification based on convolutional neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.journalIEEE Latin American Conference on Computational Intelligence (LA-CCI)es_ES
dc.description.peer-reviewDoble ciegoes_ES
dc.identifier.doi10.1109/LA-CCI.2017.8285693es_ES
dc.subject.ocdeResearch Subject Categories::TECHNOLOGYes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem